5,610 research outputs found

    Instanton theory for bosons in disordered speckle potential

    Full text link
    We study the tail of the spectrum for non-interacting bosons in a blue-detuned random speckle potential. Using an instanton approach we derive the asymptotic behavior of the density of states in d dimensions. The leading corrections resulting from fluctuations around the saddle point solution are obtained by means of the Gel'fand-Yaglom method generalized to functional determinants with zero modes. We find a good agreement with the results of numerical simulations in one dimension. The effect of weak repulsive interactions in the Lifshitz tail is also discussed.Comment: 12 pages, 3 figures, revtex

    Wave function correlations and the AC conductivity of disordered wires beyond the Mott-Berezinskii law

    Full text link
    In one-dimensional disordered wires electronic states are localized at any energy. Correlations of the states at close positive energies and the AC conductivity σ(ω)\sigma(\omega) in the limit of small frequency are described by the Mott-Berezinskii theory. We revisit the instanton approach to the statistics of wave functions and AC transport valid in the tails of the spectrum (large negative energies). Applying our recent results on functional determinants, we calculate exactly the integral over gaussian fluctuations around the exact two-instanton saddle point. We derive correlators of wave functions at different energies beyond the leading order in the energy difference. This allows us to calculate corrections to the Mott-Berezinskii law (the leading small frequency asymptotic behavior of σ(ω)\sigma(\omega)) which approximate the exact result in a broad range of ω\omega. We compare our results with the ones obtained for positive energies.Comment: 7 pages, 3 figure

    Why does the Jeans Swindle work?

    Full text link
    When measuring the mass profile of any given cosmological structure through internal kinematics, the distant background density is always ignored. This trick is often refereed to as the "Jeans Swindle". Without this trick a divergent term from the background density renders the mass profile undefined, however, this trick has no formal justification. We show that when one includes the expansion of the Universe in the Jeans equation, a term appears which exactly cancels the divergent term from the background. We thereby establish a formal justification for using the Jeans Swindle.Comment: 5 pages, 2 figures, Accepted for publication in MNRAS Letter

    Atom-molecule theory of broad Feshbach resonances

    Full text link
    We derive the atom-molecule theory for an atomic gas near a broad Feshbach resonance, where the energy dependence of the atom-molecule coupling becomes crucial for understanding experimental results. We show how our many-body theory incorporates the two-atom physics exactly. In particular, we calculate the magnetic moment of a two-component gas of ^{6}Li atoms for a wide range of magnetic fields near the broad Feshbach resonance at about 834 Gauss. We find excellent agreement with the experiment of Jochim et al. [Phys. Rev. Lett. 91, 240402 (2003)].Comment: 4 pages, 2 figure

    Crossover temperature of Bose-Einstein condensation in an atomic Fermi gas

    Full text link
    We show that in an atomic Fermi gas near a Feshbach resonance the crossover between a Bose-Einstein condensate of diatomic molecules and a Bose-Einstein condensate of Cooper pairs occurs at positive detuning, i.e., when the molecular energy level lies in the two-atom continuum. We determine the crossover temperature as a function of the applied magnetic field and find excellent agreement with the experiment of Regal et al. [Phys. Rev. Lett. 92, 040403 (2004)] that has recently observed this crossover temperature.Comment: 4 pages, 2 figure

    Localized states and interaction induced delocalization in Bose gases with quenched disorder

    Get PDF
    Very diluted Bose gas placed into a disordered environment falls into a fragmented localized state. At some critical density the repulsion between particles overcomes the disorder. The gas transits into a coherent superfluid state. In this article the geometrical and energetic characteristics of the localized state at zero temperature and the critical density at which the quantum phase transition from the localized to the superfluid state proceeds are found.Comment: 17 pages, 5 figur

    The bosonic Kondo effect

    Full text link
    The Kondo effect is associated with the formation of a many-body ground state that contains a quantum-mechanical entanglement between a (localized) fermion and the free fermions. We show that a bosonic version of the Kondo effect can occur in degenerate atomic Fermi gases near the Feshbach resonance. We also discuss how this bosonic Kondo effect can be observed experimentally.Comment: 4 pages, 2 figures, some references added, some removed. More comments adde

    Phenomenological interpolation of the inclusive J/psi cross section to proton-proton collisions at 2.76 TeV and 5.5 TeV

    Full text link
    We present a study of the inclusive J/psi cross section at 2.76 TeV and 5.5 TeV. The energy dependence of the cross section, rapidity and transverse momentum distributions are evaluated phenomenologically. Their knowledge is crucial as a reference for the interpretation of A-A and p-A J/psi results at the LHC. Our approach is the following: first, we estimate the energy evolution of the pt-integrated J/psi cross section at mid-rapidity; then, we evaluate the rapidity dependence; finally, we study the transverse momentum distribution trend. Whenever possible, both theory driven (based on pQCD predictions) and functional form (data driven fits) calculations are discussed. Our predictions are compared with the recently obtained results by the ALICE collaboration in pp collisions at 2.76 TeV.Comment: 23 pages, 19 figures, updated text+figures, added comparison to ALICE measurements at 2.76Te
    corecore